1/CHE-100 (Th) Syllabus-2023

2024

(December)

FYUP: 1st Semester Examination

MINOR

CHEMISTRY

Part-A (Theory)

(Introductory Chemistry—I)

CHE-100

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(Inorganic Chemistry—I)

(Marks: 18)

1. (a) Derive de Broglie's equation. Calculate the wavelength of an electron moving with a velocity of 2.5×10^7 m-s⁻¹.

 $(h = 6.63 \times 10^{-34} \text{ J-s}, \text{ mass of an}$ electron = $9.11 \times 10^{-31} \text{ kg}$ $1\frac{1}{2}+1\frac{1}{2}=3$

(b)	Calculate the effective nuclear charge felt by 1s and 2p electrons of a nitrogen atom. Write down the electronic configurations of P and S. Compare the stability of their electronic configurations.			
(c)				
(d)	Arrange the following sets of atoms/ions according to their increasing atomic/ionic radii:	2		
	(i) Li, K, Rb, Na			
	(\ddot{u}) Mn ²⁺ , Mn ⁷⁺ , Mn ⁵⁺ , Mn ³⁺			
(e)	State Hund's rule of maximum multiplicity.	1		
	OR			
(a)	Predict the shapes of $2s$ and $2p$ orbitals by applying probability distribution curve.	3		
(b)	Calculate the uncertainty of velocity of an electron if the uncertainty of its position is 5×10^{-10} m. ($h=6.63 \times 10^{-34}$ J-s,			
	mass of an electron = $9 \cdot 11 \times 10^{-31}$ kg)	2		

(c) Explain why the first ionization energy (IE) ₁ of Be is 899 3 kJ mol ⁻¹ and that of B is 800 1 kJ mol ⁻¹ .	2
(d) What is diagonal relationship? Why do Li and Mg show diagonal relationship?	2
(e) From the following sets of values of quantum numbers, identify which one is correct:	1
(i) $n = 1$; $l = 0, 1$; $m_e = +1, 0, -1$	
(ii) $n = 2$; $l = 0, 1$; $m_e = +1, 0, -1$	
(iii) $n = 3$; $l = 0, 1, 2$; $m_e = +1, 0, -1$	
3. (a) On the basis of hybridization, discuss the geometry and hybridization states of the central atom, and draw the orbital structures of the following molecules: 1½+1½=	
(i) BF ₃	•
(ii) PCl ₅	
(b) Point out two limitations of valence bond theory.	2
	_
D25/862	

2.

(Turn Over)

What is Born-Haber cycle? Draw the (c) Born-Haber cycle for the formation of UNIT-II NaCl and mention the terms involved. 2 (Organic Chemistry—I) Account for the fact that the dipole (Marks: 19) moment of NH3 is 1.49 D and that of 5. (a) Give the IUPAC names of the following: 1 CH₄ is 0 D. $1 \times 2 = 2$ OR 4. (a) On the basis of molecular orbital (MO) (ii) CH_3 —CH— CH_2 —CH— CH_3 CH_2OH CH_3 theory, write down the molecular orbital configurations of $\rm N_2$ and $\rm N_2^{2+}$. Calculate the bond orders and mention the nature (b) Arrange the following in order of of the bonds in each case. 3 decreasing acid strength. Give reason: 2 Predict the shapes of the following CH3COOH, Cl3CCOOH, molecules using VSEPR theory: Cl₂CHCOOH, CICH₂COOH (i) SF₄ (ii) SF₆ Carboxylic acids show much higher (c) boiling points compared to alcohols of Write down the factors affecting comparable molecular mass. Explain. polarizability of the anion. Arrange 2 the following in increasing order of 2 polarizability: Which of the following is more acidic and why? LiF, LiBr, LiCl, LiI 2 CH = CH, $CH_3 - C = CH$ (d) Between LiF and CaF2, which will have higher value of lattice energy and why? 1 D25/862 (Continued) D25/862

OR

- **6.** (a) o-nitrophenol is less soluble than its p-isomer. Explain giving suitable reasons.
 - reasons.

 Taking suitable examples, explain

2

2

- why hyperconjugation is also called 'no-bond' resonance.
- (c) Classify the following as electrophiles or nucleophiles: \(\frac{1}{2} \times 4 = 2 \)
 - (i) SnCl₄
 - (ii) R₃N
 - (iii) [⊕]NO₂
 - (iv) NH₂
- (d) Allyl carbocation is more stable and less reactive than simple carbocation. Explain.
- 7. (a) Why does cyclopropane undergo ring opening more easily than cyclobutane or cyclopentane?
 - (b) HBr gives anti-Markownikoff's addition reaction in presence of peroxide but not HCl and HI. Explain. 1½

- (c) Complete the following reactions: 1×2=2
 - (i) Cyclopentanone $\xrightarrow{\text{Zn-Hg}}$?
 - (ii) $CH_3CH_2Cl + Mg \xrightarrow{dry ether}$? $\xrightarrow{H_2O}$?
- (d) How will you carry out the following conversions? Give suitable reactions:
 1+1=2
 - (i) CH₃—C=CH into CH₃—C—CH₃
 - (ii) 1-propene into 1-propanol
- (e) Write a suitable mechanism for the preparation of CH₃CH₂CH₂CH₂CH₃ by Corev-House method.
- (f) What happens when water is dropped over calcium carbide and the gas so produced is bubbled through dilute H₂SO₄ containing HgSO₄? Write chemical equations. 1+1=2

OR

- **8.** (a) Write the product of the following reactions: 1×3=3
 - (i) Cyclobutane + HBr ----->?
 - (ii) *n*-hexane $\frac{\text{Cr}_2\text{O}_3}{500 \text{ K}, 10-20 \text{ atm}}$?

(iii)
$$C1$$
 + CH_3 — CH — CH_3 Na dry ether ?

D25/862

(Continued)

(Turn Over)

2

- (b) Write the postulates of Bayer's strain theory.

2

1

2

(c) Identify the products in the following reaction. Also, indicate the major product:

- (d) Which is more reactive towards the addition of HBr, ethylene or propylene? Explain.
- (e) Write the product(s) with mechanism for the following reaction:

(f) How is propanone obtained from propyne? Give reaction.

UNIT—III

(Physical Chemistry—I)

(Marks: 19)

- 9. (a) Derive van der Waals' equation for n moles of a gas and write down the units of van der Waals' constants. 2+1=3
 - (b) Calculate the average kinetic energy of a hydrogen molecule at 0 °C. Given, $R = 8 \cdot 314 \times 10^{-7} \text{ erg K}^{-1} \text{mol}^{-1}$.
 - (c) What are the reasons for the deviation of real gases from ideal behaviour? 2
 - (d) Derive Bragg's equation. 3

OR

- **10.** (a) Give the assumptions of the kinetic theory of gases.
 - (b) Starting from kinetic gas equation, derive (i) Avogadro's law and (ii) Charles' law. 2+2=4
 - (c) Explain Schottky and Frenkel defects in crystals.

2

3

3

11.	(a)	Define the following:	2
		(i) Vapour pressure	
		(ii) Refractive index	
	(b)	How does the viscosity of a liquid change with temperature?	2
	(c)	Derive an expression for the rate constant of a second-order reaction when the initial concentration is the same.	2
	(d)	Show that for a first-order reaction, the time required for 99.9% completion is three times the time required for 90% completion.	3
		OR	
12.	(a)	What is surface tension of a liquid? Give the unit of surface tension. 1+1=	=2
	(b)	What are the important factors that affect the vapour pressure?	2

(d) If the rate constant of a reaction is $2.0 \text{ mol}^{-1} \text{ L s}^{-1}$ at 700 K and $32 \text{ mol}^{-1} \text{ L s}^{-1}$ at 800 K, what is the activation energy?

3

reaction is independent of the reactant concentration.

Show that the half-life of a first-order

2

D25/862

(Continued)